
22 570684 Ch17.qxd 3/31/04 3:00 PM Page 222

222 Part III: Giving Your Programs the Ability to Run Amok

� Not that it’s worth mentioning, but the endless while loop setup, equiv­
alent to for(;;), is written while(1). In either case, the statements
belonging to the loop are repeated indefinitely or until a break statement
frees things up.

C from the inside out

Although C can be a strict language, it can also be flexible. For example, just
because a function returns a value doesn’t mean that you have to store that
value in a variable. You can use the value immediately inside another function.

As an example, consider the getchar() function, which returns a character
typed at the keyboard. You can use that character immediately and not store
it in a variable. That’s what I call “using C inside out.” It’s one of the more flex­
ible things you can do with C.

The TYPER2.C program is a useful one to illustrate the example of C code
being written from the inside out. Here’s what I mean:

while(ch!=’~’)
ch=getchar();

The variable ch is set by the getchar() function. Or, put another way, the
getchar() function generates the key press. The ch is just a holding place,
and using ch to store that value is merely an intermediate step. To wit:

while(getchar()!=’~’)
;

The drawback is that the character generated by getchar() isn’t saved any­
where. But, it does illustrate a nifty aspect of both the C language and the
while loop.

Reedit the TYPER2.C source code so that it looks like this:

#include <stdio.h>

int main()
{

puts(“Start typing.”);
puts(“Press ~ then Enter to stop”);

while(getchar() != ‘~’)
;

printf(“Thanks!\n”);
return(0);

}

